Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy.
نویسندگان
چکیده
Membrane proteins are molecular machines that transport ions, solutes, or information across the cell membrane. Electrophysiological techniques have unraveled many functional aspects of ion channels but suffer from the lack of structural sensitivity. Here, we present spectroelectrochemical data on vibrational changes of membrane proteins derived from a single monolayer. For the seven-helical transmembrane protein sensory rhodopsin II, structural changes of the protein backbone and the retinal cofactor as well as single ion transfer events are resolved by surface-enhanced IR difference absorption spectroscopy (SEIDAS). Angular changes of bonds versus the membrane normal have been determined because SEIDAS monitors only those vibrations whose dipole moment are oriented perpendicular to the solid surface. The application of negative membrane potentials (DeltaV = -0.3 V) leads to the selective halt of the light-induced proton transfer at the stage of D75, the counter ion of the retinal Schiff base. It is inferred that the voltage raises the energy barrier of this particular proton-transfer reaction, rendering the energy deposited in the retinal by light excitation insufficient for charge transfer to occur. The other structural rearrangements that accompany light-induced activity of the membrane protein, are essentially unaffected by the transmembrane electric field. Our results demonstrate that SEIDAS is a generic approach to study processes that depend on the membrane potential, like those in voltage-gated ion channels and transporters, to elucidate the mechanism of ion transfer with unprecedented spatial sensitivity and temporal resolution.
منابع مشابه
Voltage-dependent structural changes of the membrane-bound anion channel hVDAC1 probed by SEIRA and electrochemical impedance spectroscopy.
The voltage-dependent anion channel (VDAC) is a transmembrane protein that regulates the transfer of metabolites between the cytosol and the mitochondrium. Opening and partial closing of the channel is known to be driven by the transmembrane potential via a mechanism that is not fully understood. In this work, we employed a spectroelectrochemical approach to probe the voltage-induced molecular ...
متن کاملSurface-enhanced IR absorption spectroscopy of the KcsA potassium channel upon application of an electric field.
Surface-enhanced IR absorption spectroscopy (SEIRAS) is a powerful tool for studying the structure of molecules adsorbed on an electrode surface (ATR-SEIRA). Coupled with an electrochemical system, structural changes induced by changes in the electric field can be detected. All the membrane proteins are subjected to the effect of membrane electric field, but conformational changes at different ...
متن کاملBioenergetics at the gold surface: SEIRAS probes photosynthetic and respiratory reactions at the monolayer level.
The present study surveys a novel approach to studies of membrane proteins whose catalytic action is driven by the redox potential or by the membrane potential. We introduce SEIRAS (surface-enhanced IR absorption spectroscopy) to probe a monolayer of membrane protein adhered to the surface of a gold electrode. SEIRAS renders high surface sensitivity by enhancing the signal of the adsorbed molec...
متن کاملNovel IR spectroscopies to study biological membranes and membrane proteins
Dienstag, 4. November 2014 17.15 Uhr Stuttgarter Physikalisches Kolloquium Max-Planck-Institut für Festkörperforschung Max-Planck-Institut für Intelligente Systeme Fachbereich Physik, Universität Stuttgart Hörsaal 2 D5 Stuttgarter Max-Planck-Institute, Heisenbergstraße 1, 70569 Stuttgart-Büsnau Ansprechpartner: Christian Ast E-Mail: [email protected] Telefon: 0711 689-5250 Joachim Heberle Freie ...
متن کاملEffect of bias voltage on structural and mechanical characteristics of diamond-like carbon thin film applied by ion beam deposition
This study, investigates the effect of bias voltage on structural changes of diamond-like carbon thin film created by ion beam deposition is investigated. For this purpose, the bias voltage in the values of 0 V, -50 V, -100 V and -150 V on the AA5083 aluminum alloy was considered. Raman spectroscopy was used to evaluate structural. Influence of the bias voltage on the thickness and roughness of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 34 شماره
صفحات -
تاریخ انتشار 2008